Exploding Models of Core-Collapse Supernovae

Core-collapse supernovae have challenged theorists and computational science for half a century. Such explosions are the source of many of the heavy elements in the Universe and the birthplace of neutron stars and stellar-mass black holes. However, determining the mechanism of explosion remains the key goal of theory. Recently, there have been breakthroughs in understanding and simulating these explosions, and I will describe our recent calculations that lead to robust explosions and the physics behind them. All these events have gravitational-wave and neutrino signatures that could be diagnostic of the internal dynamics of the mechanism and explosion phenomenology in real time. I will discuss such signatures and how their detection might bear on a definitive resolution of the core-collapse puzzle.

25 Oct 2017
104 Gore Hall
Adam Burrows, Princeton University