Skip to main content
Event Date and Time
Location
ZOOM
Speaker
Deep Jariwala, University of Pennsylvania
Host
Nikolic

  The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into “all-2D” van der Waals heterostructures and making outstanding progress on fundamental studies, practical applications of 2D materials will require a broader integration strategy. I will present our ongoing and recent work on integration of 2D materials with 3D electronic materials to realize logic switches and memory devices with novel functionality that can potentially augment the performance and functionality of Silicon technology. First, I will present our recent work on gate-tunable diode1 and tunnel junction devices based on integration of 2D chalcogenides with Si and GaN. Following this I will present our recent work on non-volatile memories based on Ferroelectric Field Effect Transistors (FE-FETs) made using a heterostructure of MoS2/AlScN2 and I also will present our work on Ferroelectric Diode devices3 also based on thin AlScN.  

   Next, I will present our work on light-trapping in 2D chalcogenides and halide perovskites. I will present the effect of nano-structuring on hybridization between excitons, plasmons and cavity photons.4 I will extend this concept to 2D halide perovskites5 and demonstration of hybrid exciton-polariton emission at room temperatures. If time permits I will also give a brief overview on other ongoing efforts in the lab including tunable 1D optical materials,6 in-situ electron-microscopy7, 8 and scanning probe microscopy efforts.9 I will end by giving a broad perspective on future opportunities of 2D and other low-dimensional materials in basic science and applied microelectronics technology.

References:

1.         Miao, J.; Liu, X.; Jo, K.; He, K.; Saxena, R.; Song, B.; Zhang, H.; He, J.; Han, M.-G.; Hu, W.; Jariwala, D. Nano Letters 2020, 20, (4), 2907-2915.

2.         Liu, X.; Wang, D.; Zheng, J.; Musavigharavi, P.; Miao, J.; Stach, E. A.; Olsson III, R. H.; Jariwala, D. Nano Letters 2021.

3.         Liu, X.; Zheng, J.; Wang, D.; Musavigharavi, P.; Stach, E. A.; Olsson III, R.; Jariwala, D. Applied Physics Letters 2021. (to appear)

4.         Zhang, H.; Abhiraman, B.; Zhang, Q.; Miao, J.; Jo, K.; Roccasecca, S.; Knight, M. W.; Davoyan, A. R.; Jariwala, D. Nature Communications 2020, 11, (1), 3552.

5.         Song, B.; Hou, J.; Wang, H.; Sidhik, S.; Miao, J.; Gu, H.; Zhang, H.; Liu, S.; Fakhraai, Z.; Even, J.; Blancon, J.-C.; Mohite, A. D.; Jariwala, D. ACS Materials Letters 2021, 3, (1), 148-159.

6.         Song, B.; Liu, F.; Wang, H.; Miao, J.; Chen, Y.; Kumar, P.; Zhang, H.; Liu, X.; Gu, H.; Stach, E. A.; Liang, X.; Liu, S.; Fakhraai, Z.; Jariwala, D. ACS Photonics 2020, 7, (10), 2896-2905.

7.         Han, M.-G.; Garlow, J. A.; Liu, Y.; Zhang, H.; Li, J.; DiMarzio, D.; Knight, M. W.; Petrovic, C.; Jariwala, D.; Zhu, Y. Nano Letters 2019, 19, 7859-7865.

8.         Kumar, P.; Horwath, J. P.; Foucher, A. C.; Price, C. C.; Acero, N.; Shenoy, V. B.; Stach, E. A.; Jariwala, D. npj 2D Materials and Applications 2020, 4, (1), 1-10.

9.         Moore, D.; Jo, K.; Nguyen, C.; Lou, J.; Muratore, C.; Jariwala, D.; Glavin, N. R. npj 2D Materials and Applications 2020, 4, (1), 44.